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ABSTRACT 

In this paper, we introduce the Next Generation Attenuation (NGA) project for Central and Eastern North America (CENA) 
and summarize its key products. The project, referred to as NGA-East, was tasked with developing a new ground motion 
characterization (GMC) model for CENA. The project involved several dozens of participating researchers from academia, 
industry and government and was carried-out as a combination of 1) a scientific research project and 2) a model-building 
component following the Seismic Senior Hazard Analysis Committee (SSHAC) Level 3 process. The science part of the 
project led to several products and technical reports while the SSHAC component aggregated the various results into the 
GMC. The GMC model consists of a set of ground motion models (GMMs) for median and a suite of standard deviation 
models, each with their associated weights, combined into logic-trees for use in probabilistic seismic hazard analyses 
(PSHA). 

The final NGA-East GMC model consists of 17 median GMMs for pseudo-spectral acceleration (PSA) at 23 frequencies 
spanning 0.1 to 100 Hz, plus peak ground acceleration (PGA) and velocity (PGV). The models are provided in table form 
magnitude M ranging from 4 to 8.2 and closest-distance RRUP ranging from 0 to 1,500 km. The GMMs are applicable to very 
hard rock site conditions defined as having a shear-wave velocity VS = 3000 m/sec and a kappa (k) of 0.006 sec. Adjustments 
are provided to account for source depths, hanging wall effects and to represent the lower attenuation of the Gulf Coast 
Region (GCR) relative to the rest of CENA. Aleatory variability models were developed in a logic tree framework for the 
between-event standard deviation (τ), single-station within-event standard deviation (φSS), and site-to-site variability (φS2S). In 
turn, these models were combined to develop single-station sigma (σSS) and ergodic sigma models for CENA. 
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INTRODUCTION 

Project Overview 

NGA-East is the Next Generation Attenuation (NGA) project for Central and Eastern North America (CENA). The project 
was tasked with developing a new ground motion characterization (GMC) model for CENA [1]. The project involved a large 
number of participating researchers from academia, industry and government and was carried-out as a combination of 1) a 
scientific research project and 2) a model-building component following the Seismic Senior Hazard Analysis Committee 
(SSHAC) Level 3 process [2, 3]. The science part of the project led to several products and technical reports while the 
SSHAC component aggregated the various results into the GMC. The GMC model consists of a set of ground motion models 
(GMMs) for median and standard deviation ground motions and their associated weights, combined into logic-trees for use in 
probabilistic seismic hazard analyses. This paper provides an overview of the final NGA-East GMC model and briefly 
documents key elements of its development.  
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In developing the complete GMC model, NGA-East faced technical challenges related to the relatively small number of 
recordings available for CENA compared to western North America, for example. To resolve this shortcoming, the project 
relied on ground motion simulations to supplement the available data. Other important scientific issues were addressed 
through research projects on topics such as the regionalization of seismic source, path and attenuation of motions and on the 
re-assessment of reference site conditions and the development of related site effects models. Seven working groups were 
formed to cover the complexity and breadth of topics in the NGA-East project, each focused on a specific technical area.  

Under component (1) of NGA-East, several scientific issues were addressed, including: (a) development of a new database of 
ground motion data recorded in CENA [4]; (b) development of a regionalized ground-motion map for CENA [5]; (c) 
definition of the reference site condition [6, 7, 8]; (d) simulations of ground motions based on different methodologies [9, 
10]; and (e) development of numerous GMMs for CENA [11, 12] and (f) investigation of aleatory variability [13]. Additional 
reports addressed issues such as of magnitude scaling [14], site effects corrections [15, 16]. Several of the citations above are 
for PEER reports available at https://peer.berkeley.edu/peer-reports. Ground motions from the NGA-East database are 
available at https://peer.berkeley.edu/peer-strong-ground-motion-databases. 

The scope of component (2) of NGA-East was to develop the complete GMC. This component was designed as a SSHAC 
Level 3 study with the goal of capturing the ground motions’ center, body, and range of the technically defensible 
interpretations in light of the available data and models. The SSHAC process involves four key tasks: evaluation, integration, 
formal review by the Participatory Peer Review Panel (PPRP), and documentation [1].  

During the course of the project several innovative technologies were developed and implemented to increase the 
transparency and repeatability of the GMC building process, and to capture the center body and range of the technically 
defensible interpretations (CBR of TDI) as required by SSHAC Level 3 process. Furthermore, in developing the median 
GMM, the evaluation and integration focused on capturing the epistemic uncertainty in ground-motion values as opposed to 
examining the underlying modeling approaches. This involved using and expanding the original candidate GMM set to define 
and capture the CBR of TDI of median ground motions. Through this process, epistemic uncertainty could be quantified 
more objectively than before, and with a process that is repeatable. We also developed a new approach for modeling the 
aleatory variability that was completely independent of the median GMMs. The development made extensive use of the 
CENA database but also borrowed data from other parts of the world when relevant, and led to an integrated suite of models 
that sample the epistemic uncertainty in aleatory variability. The aleatory variability model was developed for appropriate use 
of reference site condition, favoring the partition of aleatory and epistemic uncertainty in site response through the use of 
single-station sigma. 

Objective and modeling constraints  

The NGA-East project objective was: to provide the best estimate of the distribution (median and standard deviation) of 
RotD50 [18] horizontal ground motions for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped 
pseudo-acceleration response spectra (PSA) for oscillator frequencies ranging from 0.1 to 100 Hz (periods from 0.01 to 10 
sec) on “hard-rock” sites located up to 1500 km from future earthquakes in CENA with moment magnitudes in the 4.0–8.2 
range, and to provide the epistemic uncertainty associated with this estimate. Figure 1 shows the study region. 

 
Figure 1. Study area and the four regions defined for CENA. The regions have been numbered as follows: (1) Mississippi 
Embayment/Gulf Coast Region; (2) Central North America; (3) the Appalachian Province; and (4) the Atlantic Coastal 

Plain. Together, Regions 2, 3, and 4 form the larger Mid-Continent Region. 
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The reference site conditions have been defined by the NGA-East Geotechnical Working Group as corresponding to shear-
wave velocity VS30 = 3000 m/sec and a kappa (k) of 0.006 sec [6, 7, 8,]. The significance of the reference rock definition is 
that it represents the site condition for which ground motions will be predicted using GMMs, and it represents the site 
condition to which site amplification factors are referenced (i.e., site amplification is unity for reference rock). 

MODEL FOR MEDIAN GROUND MOTIONS 

As with other SSHAC-based projects, we aimed at quantifying the epistemic uncertainty in median ground motions. Most 
past projects involved the evaluation of different existing GMMs and their integration into a GMC by applying weights to the 
individual models. NGA-East took a different approach involving the definition of the full range of ground motions, and 
subsequently creating new GMMs that would span this ground motion space with an attempt to create a set of mutually 
exclusive completely exhaustive set of GMMs. The motivation for this approach is that existing GMMs may not represent the 
complete range of epistemic uncertainty. On the one hand, GMMs that are similar in terms of development process or 
assumptions may lead to similar results, eventually getting a large aggregate weight. On the other hand, other viable GMMs 
may not have been created, but could be just as defensible. The NGA-East process attempts to correct this uneven distribution 
of ground motions, as represented by GMMs, by removing redundant models and creating new GMMs in between. The 
process can be summarized in the five steps, which are summarized in the following paragraphs (see Figure 2).  

1. Develop a suite of seed GMMs 

The seed GMMs were selected following the evaluation of an initial set of 30 candidate models applicable to CENA. To 
begin the process, the NGA-East Technical Integration (TI) team evaluated the vintage and redundancy of the candidate 
models, as well as their applicability to the range of magnitudes (M=4-8.2), distances (R=0-1200 km) and frequencies (f=0.1-
50 Hz, and PGA) required in the final model. This initial screening found 10 of the candidate models [19] were superseded 
by the most recent GMMs. The remaining 20 GMMs come from a set created specifically for the NGA-East project by 11 
developer groups using various combinations of empirical, hybrid-empirical, and simulation-based approaches [11, 12]. 
Further evaluation led to the selection of 19 seed GMMs. 

2. Develop parameters for continuous distributions of GMMs 

The selected seed GMM set was used to generate ground-motion estimates. We then characterized the full ground-motion 
distribution by estimating the means, variances, and correlations between median values at 374 different (M, RRUP) scenarios 
considered. The covariance model, together with the seed GMMs, defines the continuous distribution describing median 
ground motions and samples can be drawn from it.  

 
Figure 2. Illustration of the NGA-East median model development process, Steps 1-4 using a more intuitive one dimensional 

case as a reference. a) single (M, RRUP) scenario (one dimensions) and b) 374 (M, RRUP) scenarios, projected in two 
dimensions using Sammon’s mapping. Step 1: blue dots represent ground motions from the seed GMMs, additional orange 

and red dots in b are reference points showing the scaling with M and RRUP; Step 2 (visible only in a): black normal 
probability distribution function (PDF) shows the fit to the blue dots; Step 3 sampled ground motion values: shown as a grey 

histogram in a and as grey dots in b; Step 4 shows the re-discretization in cells and sampling of representative models in 
black dots: in a, cells are defined by vertical lines on the PDF and, in b shown as sections of an ellipse.  
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3. Visualize the ground-motion space and sample GMMs 

A suite of 10,000 ground-motion values were then sampled from the distribution defined above for each of the scenarios. It is 
impossible to grasp what 10,000 models represent in 374 dimensions, hence the visualization step is critical in the application 
of the NGA-East methodology. It involved mapping the 374 dimensions of ground motions space to a two-dimensional 
Sammon map [20, 21].  

4. Re-discretize the ground-motion space (final GMMs) 

The next step involves the definition of the range in ground-motion space, the partitioning of that range, and the selection of 
representative sets of GMMs. There are many tasks required to complete this step;  please see the final report [1] for details. 

5. Assign weights 

The last step is to calculate weights for the set of representative models. We have defined four types of weights with two 
based on the expected and realized distributions of sampled GMMs and two based on the goodness of fit of the models with 
recorded data (minimizing residuals and favoring high likelihood). We weighted the weighting scheme to come up with an 
aggregate weight for each of the 17 model at the 25 intensity measures considered (23 PSA frequencies, PGA, PGV). Final 
models were then smoothed to remove artifacts, when present, with frequency, magnitude and distance. 

MODEL FOR ALEATORY VARIABILITY 

The model development for the aleatory variability (i.e., standard deviation) of ground motions followed a simpler process, 
consisting of two key steps: (1) model building, and (2) weight assignment. The model is to be applied to all 17 median 
models in an identical fashion. The model building part involved analysis of the various components of ground-motion 
variability using recorded data from CENA. Trends of ground-motion variability with parameters such as magnitude, 
distance, and VS30 were analyzed and compared to trends of ground-motion variability observed in other regions, particularly 
the Western United States (WUS) using the NGA-West2 dataset and Japan. 

The CENA dataset is limited to small-to-moderate magnitudes and in frequency content to frequencies between 1 and 10 Hz 
due to the bandwidth limitations of the recordings. Therefore, standard deviation models developed using the CENA ground-
motion data could not be reliably extrapolated to large magnitudes, hard rock conditions, and to frequencies outside of 1 to 10 
Hz. As a result, standard deviation models from other regions such as WUS and Japan were used to inform the extrapolation 
of CENA standard deviations and overcome data limitations. Models were developed and evaluated in a logic tree framework 
for the between-event standard deviation (τ), single-station within-event standard deviation (φSS), and site-to-site variability 
(φS2S). In turn, these models were combined to develop single-station sigma (σSS) and ergodic sigma models for CENA. 

SAMPLE RESULTS 

In this section we show sample results from the final GMC. Figure 3 shows the 17 median GMMs in three complementary 
plots showing the scaling with magnitude and distance and showing the final model spectra for a given scenario. Figure 4 
shows the final weights for 1 sec (1 Hz) PSA. Figure 5 shows the comparison of the three total ergodic standard deviation 
models, along with their associated epistemic low and high branches. Finally, Figure 6 shows hazard sensitivity results to the 
median models by comparing hazard from the seed GMMs relative to the final median GMMs. 
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Figure 3. Sample results show the 17 median models. Top left: magnitude scaling for 1Hz spectral frequency (1 sec period) 
for a fixed RRUP distance of 50 km. Note the different slopes and the increased uncertainty at large M. Top right: Distance 

scaling for 1 Hz spectral frequency for a fixed M of 6. Note the different slopes and the different levels of Moho bounce 
effects in the 50-100 km range. Bottom: smoothed spectra of 17 selected models for a single (M, RRUP) scenario. 

 
Figure 4. Total weights for the 1 Hz case. Left: model number as defined in the Sammon’s maps with shading proportional to 

the total weight. Right: total weights values corresponding to shading in left figure. 
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Figure 5. Comparison of ergodic total sigma (s) models for CENA versus frequency for M = 5.0, 6.0, and 7.0. Solid lines 

show the central branches. Dashed lines show the low and high branches. 

 

 
Figure 6. Hazard curves from original weighted seed GMMs using as-is distance measures (RJB or RRUP) and from the final 
NGA-East GMMs at the Manchester site, 1 Hz. Standard deviation model used is the single branch mean ergodic total sigma. 
Note in this case a slight difference in mean hazard, but a widening in the epistemic range of ground motions for the final 
GMMs relative to the seed GMMs.  

CONCLUSIONS 

NGA-East was a large multidisciplinary community-based research initiative to develop a comprehensive ground-motion 
database and multiple GMMs for CENA for hard-rock conditions. The final GMC models is applicable to the large CENA 
region that spans Canada and the USA east of the Rockies. The model provides of RotD50 horizontal ground motions for 
PGA, PGV, and 5%-damped PSA for oscillator frequencies ranging from 0.1 to 100 Hz (periods from 0.01 to 10 sec) on 
“hard-rock” sites located up to 1500 km from future earthquakes in CENA with moment magnitudes in the 4.0–8.2 range. 
The model includes 17 median GMMs and alternate standard deviation models with the epistemic uncertainty for both sets 
captured through logic trees. Additional features not discussed in this paper include models to include source depth effects, 
hanging-wall effects and a modification of attenuation for the GCR. In addition to the final GMC, NGA-East developed a 
number of products, including a comprehensive and publicly-available database of CENA ground motion recordings.  
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